Superposition of many independent spike trains is generally not a Poisson process.

نویسنده

  • Benjamin Lindner
چکیده

We study the sum of many independent spike trains and ask whether the resulting spike train has Poisson statistics or not. It is shown that for a non-Poissonian statistics of the single spike train, the resulting sum of spikes has exponential interspike interval (ISI) distributions, vanishing the ISI correlation at a finite lag but exhibits exactly the same power spectrum as the original spike train does. This paradox is resolved by considering what happens to ISI correlations in the limit of an infinite number of superposed trains. Implications of our findings for stochastic models in the neurosciences are briefly discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dependence of Neuronal Correlations on Filter Characteristics and Marginal Spike Train Statistics

Correlated neural activity has been observed at various signal levels (e.g., spike count, membrane potential, local field potential, EEG, fMRI BOLD). Most of these signals can be considered as superpositions of spike trains filtered by components of the neural system (synapses, membranes) and the measurement process. It is largely unknown how the spike train correlation structure is altered by ...

متن کامل

Quantifying Neural Correlations Using Lempel-ziv Complexity

Spike train analysis generally focuses on two aims: (1) the estimate of the neuronal information quantity, and (2) the quantification of spikes or bursts synchronization. We introduce here a new multivariate index based on LempelZiv complexity for spike train analysis. This index, called mutual Lempel-Ziv complexity (MLZC), can both measure spikes correlations and estimate the information carri...

متن کامل

Serial Spike Time Correlations Affect Probability Distribution of Joint Spike Events

Detecting the existence of temporally coordinated spiking activity, and its role in information processing in the cortex, has remained a major challenge for neuroscience research. Different methods and approaches have been suggested to test whether the observed synchronized events are significantly different from those expected by chance. To analyze the simultaneous spike trains for precise spi...

متن کامل

The power ratio and the interval map: spiking models and extracellular recordings.

We describe a new, computationally simple method for analyzing the dynamics of neuronal spike trains driven by external stimuli. The goal of our method is to test the predictions of simple spike-generating models against extracellularly recorded neuronal responses. Through a new statistic called the power ratio, we distinguish between two broad classes of responses: (1) responses that can be co...

متن کامل

The power ratio and the interval map: spiking models and extracellular data

We describe a new, computationally simple method for analyzing the dynamics of neuronal spike trains driven by external stimuli. The goal of our method is to test the predictions of simple spike-generating models against extracellularly recorded neuronal responses. Through a new statistic called the power ratio, we distinguish between two broad classes of responses: (1) responses that can be co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 73 2 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2006